

The diabetes dataset is a commonly used dataset in machine learning and data analysis. The dataset contains medical information about patients with diabetes and is often used for predicting whether or not a patient has diabetes based on their clinical characteristics.
The dataset includes information on 768 patients and 8 medical predictors, as well as an outcome variable indicating whether or not the patient has diabetes. The predictors include:
Pregnancies: Number of times pregnant
Glucose: Plasma glucose concentration a 2-hours in an oral glucose tolerance test
Blood-Pressure: Diastolic blood pressure (mm Hg)
Skin-Thickness: Triceps skin fold thickness (mm)
Insulin: 2-Hour serum insulin (mu U/ml)
BMI: Body mass index (weight in kg/(height in m)^2)
Diabetes-Pedigree-Function: Diabetes pedigree function
Age: Age in years
The outcome variable is binary, with 1 indicating that the patient has diabetes and 0 indicating that the patient does not have diabetes.
The dataset is often used in machine learning projects for predicting diabetes and can also be used for data analysis and visualization. It is a widely used dataset in the field of healthcare and is an important resource for researchers and data scientists working on diabetes-related projects.
Background of the Study
Diabetes is a chronic medical condition characterized by high blood sugar levels. The history of diabetes dates back to ancient times, and its understanding and treatment have evolved significantly over the years.
Here's a brief history of diabetes:
· Ancient Egypt: The first recorded mention of diabetes symptoms was in 1550 BCE in ancient Egypt. It described a condition called "too great emptying of the urine."
· Ancient India: Indian physicians identified diabetes and classified it into two types, which they called madhumeha (meaning "honey urine") and vridhameha (meaning "large urine"). They also recognized that people with diabetes had a sweet taste in their urine.
· [bookmark: _GoBack]Ancient Greece and Rome: In 2nd century AD, Greek physician Aretaeus of Cappadocia described the disease as "diabetes" which means "to pass through" in Greek, referring to the excessive urine output. In 1st century AD, Roman physician Celsus recommended a diet low in carbohydrates and high in fiber for treating diabetes.
· Middle Ages: During this time, there was not much progress in understanding diabetes. It was still identified by the sweet taste in the urine, and it was thought to be caused by too much food and drink.
· 18th and 19th centuries: In 1776, English physician Matthew Dobson discovered that sugar was present in the urine of people with diabetes. In 1889, German physician Oskar Minkowski found that removing the pancreas from a dog caused the dog to develop diabetes. In 1869, Paul Langerhans identified the clusters of cells within the pancreas that produce insulin, which was later discovered to be the hormone responsible for regulating blood sugar.
· 20th century: In 1921, Canadian scientists Frederick Banting and Charles Best discovered insulin, which became the first effective treatment for diabetes. In 1959, the oral medication tolbutamide was approved for use in diabetes treatment. In 1982, the first biosynthetic human insulin was produced. In the late 1990s, the first oral medication for type 2 diabetes, metformin, was introduced.
· 21st century: Diabetes continues to be a significant health problem worldwide, and research in genetics, cell biology, and technology are advancing the understanding and treatment of diabetes. In 2020, the first "artificial pancreas" system was approved for use in people with type 1 diabetes.
Today, diabetes is recognized as a complex disease that requires ongoing management to prevent long-term complications.
There are two main types of diabetes: type 1 and type 2. Type 1 diabetes, which typically develops in childhood or adolescence, is an autoimmune disease in which the immune system attacks and destroys the insulin-producing cells in the pancreas. Type 2 diabetes, which is more common and typically develops in adulthood, occurs when the body becomes resistant to insulin or doesn't produce enough insulin to maintain normal blood sugar levels.
Other types of diabetes include gestational diabetes, which occurs during pregnancy, and rare genetic forms of diabetes.
Diabetes can lead to a range of health complications, including cardiovascular disease, kidney disease, nerve damage, and blindness. Treatment typically involves managing blood sugar levels through diet, exercise, medication, and insulin therapy.
Prevention efforts for type 2 diabetes include maintaining a healthy weight, exercising regularly, and following a healthy diet. Early diagnosis and effective management are critical for preventing long-term complications and improving outcomes for people with diabetes.
Diagrams and tables to explain the area/Domain or topic Objectives of the study
Here are some diagrams and tables to explain the area/domain of the diabetes dataset.
Scatterplot matrix:
A scatterplot matrix can be used to visualize the relationships between the variables in the diabetes dataset. The diagonal shows the distribution of each variable, while the off-diagonal elements show the pairwise relationships between the variables.
[image:]
Correlation matrix:
A correlation matrix shows the pairwise correlations between the variables in the dataset. The correlation coefficient ranges from -1 to 1, where -1 indicates a perfect negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation,
From the scatterplot matrix and correlation matrix, we can see that there are some correlations between the variables. For example, there is a positive correlation between glucose levels and the outcome variable, indicating that higher glucose levels are associated with a higher risk of diabetes.
[image:]

Histograms:
Histograms can be used to visualize the distribution of each variable in the dataset.
From the histograms, we can see that some of the variables, such as blood pressure and BMI, are normally distributed, while others, such as insulin and skin thickness, have skewed distributions.
[image:]
Summary statistics:
Summary statistics can be used to summarize the central tendency, variability, and distribution of each variable in the dataset.				
	Variable
	Mean
	Standard deviation
	Minimum
	Maximum

	Pregnancies
	3.85
	3.37
	0
	17

	Glucose
	120.89
	32.00
	0
	199

	Blood Pressure
	69.10
	19.36
	0
	122

	Skin Thickness
	20.54
	15.95
	0
	99

	Insulin
	79.80
	115.21
	0
	846

	BMI
	31.99
	7.88
	0
	67.1

	Diabetes Pedigree Function
	0.47
	0.33
	0.08
	2.42

	Age
	33.24
	11.76
	21
	81

From the summary statistics, we can see that the range of values for each variable varies widely. For example, the range of insulin values is from 0 to 846, while the range of age values is from 21 to 81. This indicates that the variables in the dataset have different units and scales, which may need to be normalized or scaled before being used in a machine learning model.
block diagram of closed-loop glucose control
[image:]
Flow-Chart and-Block Diagram of Proposed Methodology for Diabetes Diagnosis
[image:]
Clearly explaining your expected outcomes
The expected outcome of the diabetes dataset would depend on the specific goal of the analysis or machine learning model being developed.
If the goal is to develop a predictive model to classify patients as having or not having diabetes based on their medical records, then the expected outcome would be a model that accurately predicts the likelihood of a patient having diabetes based on their medical records. The accuracy of the model would be measured using evaluation metrics such as accuracy, precision, recall, and F1 score.
If the goal is to understand the relationships between the variables in the dataset, then the expected outcome would be insights into the factors that are associated with the risk of diabetes. For example, the analysis might reveal that higher glucose levels, higher BMI, and older age are associated with a higher risk of diabetes. These insights could be used to develop interventions or preventative measures to reduce the risk of diabetes.
In summary, the expected outcome of the diabetes dataset would depend on the specific goal of the analysis or machine learning model being developed. The goal should be clearly defined and the analysis should be designed to achieve that goal.
Any Feature Extraction Techniques
There are many feature extraction techniques that can be used with diabetes dataset. Here are a few commonly used techniques:
Principal Component Analysis (PCA): PCA is a technique used to reduce the dimensionality of the data by identifying the most important features. This can help in identifying the most important features that contribute to diabetes.
Recursive Feature Elimination (RFE): RFE is a technique used to select the most relevant features for a given problem. It works by iteratively removing the least important features until a desired number of features is reached.
Mutual Information: Mutual information measures the amount of information shared between two variables. It can be used to identify the features that are most correlated with diabetes.
Correlation: Correlation measures the strength of the relationship between two variables. It can be used to identify the features that are most correlated with diabetes.
SelectKBest: SelectKBest is a technique that selects the top K features based on statistical tests. It can be used to identify the features that are most relevant to diabetes.
These techniques can be used individually or in combination to extract the most important features from the diabetes dataset.
Different ML models Evaluation of the Models Conclusion
There are various machine learning (ML) models available, and each model has its own strengths and weaknesses. Evaluating the performance of these models is crucial in determining which model is best suited for a particular problem.
Here are some commonly used ML models and how they are evaluated:
Linear Regression: Linear regression is evaluated based on the mean squared error (MSE) or the root mean squared error (RMSE) between the predicted and actual values.
Logistic Regression: Logistic regression is evaluated based on the accuracy of the predictions, as well as metrics like precision, recall, and F1 score.
Decision Trees: Decision trees are evaluated based on metrics like accuracy, precision, recall, F1 score, and the area under the receiver operating characteristic (ROC) curve.
Random Forests: Random forests are evaluated using similar metrics as decision trees, but they may also be evaluated using feature importance rankings.
Support Vector Machines (SVMs): SVMs are evaluated based on metrics like accuracy, precision, recall, F1 score, and the area under the ROC curve.
Neural Networks: Neural networks are evaluated based on metrics like accuracy, precision, recall, F1 score, and the area under the ROC curve. They may also be evaluated based on loss and validation accuracy during training.
In conclusion, evaluating the performance of ML models is essential to choose the best model for a particular problem. Different models are evaluated using different metrics, and it is important to choose the appropriate evaluation metrics for the problem at hand. Additionally, it is often useful to compare the performance of multiple models to determine which one is the most suitable.
Coding work
1st step: Import package
[image:]
2nd step: Info
[image:]
3rd step: Outliers
[image:]
4th step: Smoothing
[image:]
5th step: Correlation
[image:]
[image:]
6th step: Count of diabetes
[image:]
7th step: Naïve_bayes
[image:]
[image:]
8th step: KNN
[image:]
9th step: Decision tree
[image:]

image6.png
In [5]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
|from IPython.display import display
#matplotlib inline

image7.png
In [9]: | # display the number of entries, the number of the column attributes, the data type and
digit placings, and the memory space used
df.info()

<class "pandas.core. frame.DataFrame’>
RangeIndex: 768 entries, @ to 767
Data columns (total @ columns):

Colum Non-Null Count Dtype
© Pregnancies 768 non-null int64
1 Glucose 768 non-null int64
2 BloodPressure 768 non-null int64
3 skinThickness 768 non-null int64
4 Insulin 768 non-null int64
5 BMI 768 non-null floates
6 DiabetesPedigreeFunction 768 non-null floated
7 Age 768 non-null int64
8 outcome 768 non-null int64

dtypes: float6d(2), int64(7)
memory usage: 54.1 KB

image8.png
In [11]:

out[11]:

identify impossible values and outliers using boxplot
df.boxplot(rot - @, boxprops - dict(color= "blue"),return_tyy
plt.title("Box plot of Diabates data”)

plt.suptitle("")

plt.xlabel("Attributes”)

plt.ylabel("mesurements (cm)")

plt.shou

axes”, figsize=(30,10))

<function matplotlib.pyplot.shou(clos

None, block=None)>

,- |

3 {
=

B . E

image9.png
In [14]: | # smooth impossible values by replacing the value with the mean value

¢ "Glucose”
["BloodPressure”
Gf["skinThickness"
¢f[Insulin®

GF[BMI"]=df['BNI"].replace(®, df.BHI.mean())

In [15]: df.describe()

#["Glucose "].replace(®, df.Glucose.mean())

~df['BloodPressure”].replace(e, df.BloodPressure.mean())
df["skinThickness'].replace(e, df.skinThickness.mean())
[Insulin’].replace(®, df.Insulin.mean())

out[15]: Pregnancies Glucose BloodPressure SkinThickness. Insulin BMI DiabetesPedigreeFunction Age Outcome
count 762000000 765.000000 765.000000 765.000000 768.000000 768000000 768.000000 768.000000 768.000000

mean 3845052 121681605 72254807 26606479 118660163 32450805 0471876 33240885 0.348958

st 3369578 30.436016 12115032 0631241 93080358 6.675374 0331320 11760232 0.476951

min 0000000 44.000000 24.000000 7.000000 14.000000 18.200000 0078000 21.000000 0.000000

25% 1.000000 99.750000 64000000 20536458 79799479 27.500000 0243750 24.000000 0.000000

50% 3.000000 117.000000 72000000 23000000 79799479 32.000000 0372500 29.000000 0.000000

75% 6.000000 140.250000 £0.000000 32000000 127.250000 36.600000 0626250 41.000000 1.000000

max 17.000000 199.000000 122000000 99.000000 846.000000 67100000 2420000 81.000000 1.000000

image10.png
In [28]: sns.heatmap(df.corr(),cmap="PuBu’, annot-True)
plt.shou()

image11.png
plt.figure(figsize=(4,4))
ax-sns_countplot ([Outcome"], palette="PuBu")
ax. set_xticklabels(ax.get_xticklabels(),rotation=
plt.suptitle(’count of disbates outcome')
plt.shou()

,ha="right")

C:\Users\aalleey\anaconda3\1ib\site-packages\seaborn_decorators.py:
arg: x. From version .12, the only valid positional argument will be
eyword will result in an error or misinterpretation.

warnings.warn(

count of disbates outcome

500

400

300

count

200

100

image12.png
In [36]: from sklearn.model_selection import train_test_split
From sklearn.neighbors import KNeighborsClassifier
From sklearn import tree
from sklearn.naive_bayes import Gaussianhg
import math

G "Outcome’
["Outcome”

i .Outcome . astype(str)
¢ .Outcome . astype(object)

X=df .iloc[:,:-1].values
y=df.iloc[:,8]

=[0.8,0.7,0.6,0.5,0.4,0.3,0.2]
DT-tree.DecisionTreeClassifier(splitter="best",criterion="entropy’,min_samples_leaf-2)
NB-GaussianhB()

KNN-KNeighborsClassifier(n_neighbors = math.ceil(math.sqrt(768)))

plt.figure()

for 1 in range(1,1008):
X_train,X_test,y_train,y_test- train_test_split(X.
DT.fit(X_train,y_train)
scores. append(DT.score(X_test,y_test))
NE.Fit(X train,y train)

,test_size=1-s,random_state-087)

image13.png
scores.append(NB. score(X_test,y_test))

KNN. Ft(X_train,y_train)

scores. append(KNN. score(X_test,y_test))
plt.plot(s,np.mean(scores), 'bo’)

plt.xlabel(training Set Proposition’)
plt.ylabel(*Accuracy’)
— 073

072

Accuracy

071

070 .

02 03 0.4 05 0.6 07

0.8

image14.png
SRS
scores. append (knn. score(X_test,y_test))

plt.figure()

plt.xlabel("k")

plt.ylabel(accuracy’)

plt.scatter(k_range,scores)

plt.xticks([e,5,10,15,20,25]);

Dt £

0.68 °e
.

>
g .
3 .
g 066

064

.
062
0 5 10 15 20 25

image15.png
1In [36]: classifierDt-tree.DecisionTreeClassifier(splitter="best’,criterion="entropy’,min_samples_leaf-2)
ClassifierDt.fit(X_train,y_train)
From sklearn import tree

Fig-plt.figure(figsize-(50,20))
#n-['Pregnancies’, "Glucose", 'BloodPressure”, "SkinThickness ', "Insulin®, "BMI', ‘DiabetesPedigreeFunction’, Age']

DT-tree.plot_tree(classifierDt, feature_names=fn,class_names-y, Filled-True)

image1.png
In [19]: quxlrt seaborn as sns

1In [20]: g-sns.pairplot(df,hue-"Outcome" ,palette="PuBu")

g-g-map_upper(plt.scatter)
g-g.map_lower (sns.kdeplot)

i

v

EEBEEEEEN]

pre—

3

;
;
5
4
3

image2.png
10

Pregnancies 0.13 021 0.013-0.0180.022-0.034/0%EN 0.22

Glucose - 0.13 022 016 04 023 014 027 Lt

08
BloodPressure - 021
skinThickness ~0.013 06
insulin ~0.018
BMI -0.022 o4
DiabetesPedigreeFunction ~0.034
-02
Age
Outcome - 022 L) 016 018 018 031 017 024 oo

Pregnancies -
Glucose

BloodPressure -

skinThickness -

insulin ~

BMI -

Age -

sPedigreeFunction -

233208665ac8d422586736725 18050940,

image3.jpg

image4.png
Insulin Absorption
Delay ~30-100 min

Subject '

Plasma
Glucose

Controller =——> Pump

Insulin Action Delay:
Periphery ~20 min

Glucose
Sensor

Interstitium-Plasma

Delay ~5-15 min

image5.png
¥
= KNN Classifier
choose Aigorim 2 1
oR v

&>

Input=Dataset

Datasetvithess
smension

Dataset (01)

Wi PCA

Dataset 02)

Putput-Diagnos:
orDisease

s &
Dataser Dz pea Dataset (03)
Wi PCA needed?
s
Dataset03
W PCA
I

Dataset

Pre- Processing
Algorithm
Pattern Matching

Attribute Checking

PCA

Non-Diabetic

Diabetic

KN Classifier

