

TERM PROJECT

 1.1. INTRODUCTION ... 2
 1.2. BACKGROUND ... 4
 1.3. OBJECTIVE: ... 6
 1.4. BASIC OVERVIEW THTOUGH PYTHON CODE: ... 7
 1.5. PREPARING FOR MEDELING: .. 9
 1.6. MODELING: ... 10
 1.7. COMPARING MODELS AND ACCURACY: ... 13
 1.8. EVALUATION: .. 18
 1.9. CONCLUSION: ... 20

 INTRODUCTION

The quality of a wine is important for the consumers as well as

the wine industry. The traditional (expert) way of measuring

wine quality is time-consuming. Nowadays, machine learning

models are important tools to replace human tasks. In this

case, there are several features to predict the wine quality but

the entire features will not be relevant for better prediction. So, our thesis work

is focusing on what wine features are important to get the promising result. For

the purpose of classification model and evaluation of the relevant features, we

used three algorithms namely support vector machine (SVM), naïve Bayes (NB),

and artificial neural network (ANN). In this study, we used two wine quality

datasets red wine and white wine. To evaluate the feature importance we used

the Pearson coefficient correlation and performance measurement matrices

such as accuracy, recall, precision, and f1 score for comparison of the machine

learning algorithm. A grid search algorithm was applied to improve the model

accuracy.

For this project, I used Red Wine Quality dataset to build various classification

models to predict whether a particular red wine is “good quality” or not. Each

wine in this dataset is given a “quality” score between 0 and 10. For the purpose

of this project, I converted the output to a binary output where each wine is

either “good quality” (a score of 7 or higher) or not (a score below 7) The quality

of a wine is determined by 11 input variables:

1. Fixed acidity

2. Volatile acidity

3. Citric acid

4. Residual sugar

5. Chlorides

6. Free sulfur dioxide

7. Total sulfur dioxide

8. Density

9. pH

10. Sulfates

11. Alcohol

Attributes Description

fixed acidity Fixed acids, numeric from 3.8 to 15.9

volatile acidity Volatile acids, numeric from 0.1 to 1.6

citric acid Citric acids, numeric from 0.0 to 1.7

residual sugar residual sugar, numeric from 0.6 to

65.8

chlorides Chloride, numeric from 0.01 to 0.61

free sulfur

dioxide

Free sulfur dioxide, numeric: from 1 to

289

total sulfur

dioxide

Total sulfur dioxide, numeric: from 6

to 440

density Density, numeric: from 0.987 to 1.039

pH pH, numeric: from 2.7 to 4.0

sulfates Sulfates, numeric: from 0.2 to 2.0

alcohol Alcohol, numeric: from 8.0 to 14.9

quality Quality, numeric: from 0 to 10, the

output target

 BACKGROUND

A wide range of machine learning algorithms is available for the learning

process. This section describes the classification algorithms used in wine

quality prediction and related work.

 Classification algorithm

 Naive Bayesian

The naive Bayesian is the simple supervised machine learning classification

algorithm based on the Bayes theorem. The algorithm assumes that the

feature conditions are independent of the given class. The naive Bayes

algorithm helps to build fast machine learning models that can make a fast

prediction. The algorithm finds whether a particular portion has a spot by a

particular class it utilizes the probability of likelihood.

 Support Vector Machine

The support vector machine (SVM) is the most popular and most widely used

machine learning algorithm. It is a supervised learning model that can perform

classification and regression tasks. However, it is primarily used for

classification problems in machine learning.

The SVM algorithm aims to create the best line or decision boundary that can

separate n-dimensional space into classes. So we can put the new data points

easily in the correct groups. This best decision boundary is called a hyperplane.

The support vector machine selects the extreme data points that helping to

create the hyperplane. In above diagram, two different groups are classified by

using the decision boundary or hyperplane:

The SVM model is used for both non-linear and linear data. It uses a nonlinear

mapping to convert the main preparing information into a higher

measurement. The model searches for the linear optimum splitting

hyperplane in this new measurement. A hyperplane can split the data into

two classes with an appropriate nonlinear mapping to suitably high

measurements and for the finding, this hyperplane SVM uses the support

vectors and edges. The SVM model is a representation of the models as a

point in space, the different classes are isolated by the gap to mapped with

the aim that instances are wide as would be careful. The model can perform

out a nonlinear form of classification.

 Artificial neural network

The artificial neural network is a collection of neurons that can process

information. It has been successfully applied to the classification task in several

industries, including the commercial, industrial, and scientific filed. The

algorithm model is a connection between the neurons that are interconnected

with the input layer, a hidden layer, and an output layer. The neural network is

constant because while an element of the neural network is failing, it can

continue its parallel nature without any difficulties.

The implementation of the artificial neural network consists of three layers:

input, hidden, and, output. The function at the input layer is mapped the input

attribute which passes input to the hidden layer. The hidden layer is a middle

layer where all input with the weights is received to each node in the hidden

layer. The output layer is mapped to the predicted. The connection among the

neurons is called weights, it has numerical values and this weight among the

neurons are determining the learning ability of the neural network. The

activation function is used to standardize the output from the neurons and

these activation functions are evaluate the output of the neural network in the

mathematical equations. Each neuron has an activation function. The neural

network is hard to understand without mathematical reasoning. Activation

functions are also called the transmission function and also helps to

standardize the output range between -1 to 1 or 0 to 1.

 OBJECTIVES

The objectives of this project are as follows:

 Explaining data set through the code of python.

 To implement different machine learning techniques.

 To experiment with different methods to see which yields the highest accuracy.

 To determine which features are the most indicative of a good quality wine.

First, I imported all of the relevant libraries that I’ll be using as well as the data

itself.

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.datasets import load_wine

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.preprocessing import StandardScaler, LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix,

classification_report,accuracy_score

import warnings

warnings.filterwarnings("ignore")

 Reading Data

import wine dataset

wine = datasets.load_wine()

np.c_ is the numpy concatenate function

wine_df = pd.DataFrame(data= np.c_[wine['data'], wine['target']],

columns= wine['feature_names'] + ['target'])

wine_df.head()

There are a total of 1599 rows and 12 columns. The data looks very clean by

looking at the first five rows, but I still wanted to make sure that there were no

missing values.

 Array

 Missing Values

This is a very beginner-friendly dataset. I did not have to deal with any missing

values, and there isn’t much flexibility to conduct some feature engineering

given these variables. Next, I wanted to explore my data a little bit more.

 Exploring Variables

Histogram of ‘quality’ variable

First, I wanted to see the distribution of the quality variable. I wanted to make

sure that I had enough ‘good quality’ wines in my dataset — you’ll see later how

I defined ‘good quality’. The datasets are the imbalanced distribution of red

wine and white wine where the separate classes are not equally represented.

This imbalanced data can lead to overfitting and under fitting algorithms. The

red wine's highest quality class 5 instances are 681 and white wine highest

quality class 6 instances are 2198. Both datasets are unbalanced with the

number of instances ranging from 5 in the minority class up to 681 in red wine

and ranging from 6 in the minority class up to 2198 in the majority class. The

highest quality scores are rarely paralleled to the middle classes. By using

resampling this problem can be solved, the resampling is by adding copies of

examples from the under-represented class of unnaturally creating such

instances (over-sampling) or either by removing from the over- represented

class (under-sampling). Mostly, it will be better to over-sample unless you have

sufficiently of data. However, there are some disadvantages to over-sampling

it increases the instances of the dataset, so the processing time is increasing to

build the model. Over- sampling can lead to overfitting when putting the

extremes. Therefore the resampling is preferred.

fig = px.histogram(df,x='quality')

fig.show()

 Correlation Matrix

Next I wanted to see the correlations between the variables that I’m working

with. This allows me to get a much better understanding of the relationships

between my variables in a quick glimpse.

Immediately, I can see that there are some variables that are strongly

correlated to quality. It’s likely that these variables are also the most important

features in our machine learning model, but we’ll take a look at that later.

For a better understanding of the features and to examines the correlation

between the features. We use the Pearson coefficient correlation matrices to

calculate the correlation between the features.

plt.figure(figsize=(15,10))

sns.heatmap(wine_df.corr(),annot=True)

plt.show()

From above screenshot of red wine correlation matrix we ranked the features

according to the high correlation values to the quality class such as freatures

are 'alcohol', 'volatile acidity', 'sulphates', 'citric acid', 'total sulfur dioxide',

'density', 'chlorides', 'fixed acidity', 'pH', 'free sulfur dioxide', 'residual sugar'.

Similarily, from Figure 6 white wine correlation matrix we ranked the features

according to the high correlation values to the quality class such as freatures

are 'alcohol', 'density', 'chlorides', 'volatile acidity', 'total sulfur dioxide', 'fixed

acidity', 'pH', 'residual sugar', 'sulphates', 'citric acid', 'free sulfur dioxide'.

 Plotting target values

 Convert to a Classification Problem

Going back to my objective, I wanted to compare the effectiveness of different

classification techniques, so I needed to change the output variable to a binary

output.

For this problem, I defined a bottle of wine as ‘good quality’ if it had a quality

score of 7 or higher, and if it had a score of less than 7, it was deemed ‘bad

quality’.

Once I converted the output variable to a binary output, I separated my feature

variables (X) and the target variable (y) into separate dataframes.

Create Classification version of target variable

df['goodquality'] = [1 if x >= 7 else 0 for x in df['quality']]# Separate feature

variables and target variable

X = df.drop(['quality','goodquality'], axis = 1)

y = df['goodquality']

 Proportion of Good vs Bad Wines

I wanted to make sure that there was a reasonable number of good quality

wines. Based on the results below, it seemed like a fair enough number. In some

applications, resampling may be required if the data was extremely

imbalanced, but I assumed that it was okay for this purpose.

See proportion of good vs bad wines

df['goodquality'].value_counts()

 Preparing Data for Modelling

 Standardizing Feature Variables

At this point, I felt that I was ready to prepare the data for modelling. The first

thing that I did was standardize the data. Standardizing the data means that it

will transform the data so that its distribution will have a mean of 0 and a

standard deviation of 1. It’s important to standardize your data in order to

equalize the range of the data.

For example, imagine a dataset with two input features: height in millimeters

and weight in pounds. Because the values of ‘height’ are much higher due to

its measurement, a greater emphasis will automatically be placed on height

than weight, creating a bias.

Normalize feature variables

from sklearn.preprocessing import StandardScaler

X_features = X

X = StandardScaler().fit_transform(X)

Split data

Next I split the data into a training and test set so that I could cross-validate my

models and determine their effectiveness.

Splitting the data

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.25,

random_state=0)

Now,

 Modelling

For this project, I wanted to compare five different machine learning models:

decision trees, random forests, AdaBoost, Gradient Boost, and XGBoost. For the

purpose of this project, I wanted to compare these models by their accuracy.

 Model 1: Decision Tree

Decision trees are a popular model, used in operations research, strategic

planning, and machine learning. Each square above is called a node, and the

more nodes you have, the more accurate your decision tree will be (generally).

The last nodes of the decision tree, where a decision is made, are called the

leaves of the tree. Decision trees are intuitive and easy to build but fall short

when it comes to accuracy.

from sklearn.metrics import classification_report

from sklearn.tree import DecisionTreeClassifiermodel1 =

DecisionTreeClassifier(random_state=1)

model1.fit(X_train, y_train)

y_pred1 = model1.predict(X_test)print(classification_report(y_test, y_pred1))

 Model 2: Random Forest

Random forests are an ensemble learning technique that builds off of decision

trees. Random forests involve creating multiple decision trees

using bootstrapped datasets of the original data and randomly selecting a

subset of variables at each step of the decision tree. The model then selects the

mode of all of the predictions of each decision tree. What’s the point of this? By

https://en.wikipedia.org/wiki/Ensemble_learning
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/

relying on a “majority wins” model, it reduces the risk of error from an individual

tree.

For example, if we created one decision tree, the third one, it would predict 0. But

if we relied on the mode of all 4 decision trees, the predicted value would be 1.

This is the power of random forests.

from sklearn.ensemble import RandomForestClassifier

model2 = RandomForestClassifier(random_state=1)

model2.fit(X_train, y_train)

y_pred2 = model2.predict(X_test)print(classification_report(y_test, y_pred2))

 Model 3: AdaBoost

The next three models are boosting algorithms that take weak learners and turn

them into strong ones. I don’t want to get sidetracked and explain the

differences between the three because it’s quite complicated and intricate.

That being said, I’ll leave some resources where you can learn about AdaBoost,

Gradient Boosting, and XGBoosting.

StatQuest: AdaBoost

StatQuest: Gradient Boost

https://www.youtube.com/watch?v=LsK-xG1cLYA
https://www.youtube.com/watch?v=3CC4N4z3GJc

 StatQuest: XGBoost

from sklearn.ensemble import AdaBoostClassifier

model3 = AdaBoostClassifier(random_state=1)

model3.fit(X_train, y_train)

y_pred3 = model3.predict(X_test)print(classification_report(y_test, y_pred3))

 Model4: KNN

Train

fit_knn <- knn3(formula = fml, data = train_set, k = 5)

Predict

y_knn <- predict(object = fit_knn,

newdata = test_set,

type ="class")

Compare the results: confusion matrix

caret::confusionMatrix(data = y_knn,

reference = test_set$type,

positive = "red")

https://www.youtube.com/watch?v=OtD8wVaFm6E

Confusion Matrix and Statistics

Reference

Prediction red white

red 145 15

white 15 475

Accuracy : 0.954

95% CI : (0.935, 0.969)

No Information Rate : 0.754

P-Value [Acc > NIR] : <2e-16

Kappa : 0.876

Mcnemar's Test P-Value : 1

Sensitivity : 0.906

Specificity : 0.969

Pos Pred Value : 0.906

Neg Pred Value : 0.969

Prevalence : 0.246

Detection Rate : 0.223

Detection Prevalence : 0.246

Balanced Accuracy : 0.938

'Positive' Class : red

F1 score

F_meas(data = y_knn, reference = test_set$type)

[1] 0.906

 Model 4: Gradient Boosting

from sklearn.ensemble import GradientBoostingClassifier

model4 = GradientBoostingClassifier(random_state=1)

model4.fit(X_train, y_train)

y_pred4 = model4.predict(X_test)print(classification_report(y_test, y_pred4))

 Model 5: XGBoost

import xgboost as xgb

model5 = xgb.XGBClassifier(random_state=1)

model5.fit(X_train, y_train)

y_pred5 = model5.predict(X_test)print(classification_report(y_test, y_pred5))

By comparing the five models, the random forest and XGBoost seems to yield

the highest level of accuracy. However, since XGBoost has a better f1-score for

predicting good quality wines (1), I’m concluding that the XGBoost is the winner

of the five models.

 Feature Importance

Below, I graphed the feature importance based on the Random Forest model

and the XGBoost model. While they slightly vary, the top 3 features are the same:

alcohol, volatile acidity, and sulphates. If you look below the graphs, I split the

dataset into good quality and bad quality to compare these variables in more

detail. The importance of the features are identified and from both dataset's

first 10 features were selected and the last feature was excluded, above red wine

performance analysis and white wine performance analysis shows that the

performance in terms of accuracy.

Firstly, these selected features were implemented on the unbalanced classes,

the unbalanced classes and the performance of the prediction model, in terms

of accuracy, precision, recall, and F1 score is examined.

 SVM NB ANN

Class

Pr
ec

is
i

on

Re
ca

ll

F1

sc
or

e
Pr

ec
is

i

on

Re
ca

ll

F1

sc
or

e
Pr

ec
is

i

on

Re
ca

ll

F1

sc
or

e

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.17 0.50 0.26 0.00 0.00 0.00

5 0.79 0.79 0.79 0.73 0.60 0.66 0.70 0.82 0.76

6 0.60 0.60 0.60 0.54 0.53 0.54 0.57 0.62 0.59

7 0.62 0.62 0.62 0.32 0.43 0.37 0.62 0.23 0.33

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Accurac

y

69.06 54.06 64.37

 via Random Forest

feat_importances = pd.Series(model2.feature_importances_,

index=X_features.columns)

feat_importances.nlargest(25).plot(kind='barh',figsize=(10,10))

 via XGBoost

feat_importances = pd.Series(model5.feature_importances_,

index=X_features.columns)

feat_importances.nlargest(25).plot(kind='barh',figsize=(10,10))

 Evaluation

The performance measurement is calculated and evaluate the techniques to

detect the effectiveness and efficiency of the model. There are four ways to

check the predictions are correct or incorrect:

 True Positive: Number of samples that are predicted to be positive which are

truly positive.

 False Positive: Number of samples that are predicted to be positive which are

truly negative.

 False Negative: Number of samples that are predicted to be negative which are

truly positive.

 True Negative: Number of samples that are predicted to be negative which are

truly negative.

Below listed techniques, we use for the evaluation of the model.

1. Accuracy – Accuracy is defined as the ratio of correctly predicted observation

to the total observation. The accuracy can be calculated easily by dividing the

number of correct predictions by the total number of prediction.

 True Positive + True Negative

Accuracy = True Positive + False Positive + False Negative + True Negative

2. Precision – Precision is defined as the ratio of correctly predicted positive

observations to the total predicted positive observations.

Precision =

True Positive

True Positive + False Positive

3. Recall – Recall is defined as the ratio of correctly predicted positive

observations to all observations in the actual class. The recall is also known as

the True Positive rate calculated as,

Recall = True Positive

True Positive + False Negative

4. F1 Score – F1 score is the weighted average of precision and recall. The f1 score

is used to measure the test accuracy of the model. F1 score is calculated by

multiplying the recall and precision is divided by the recall and precision, and

the result is calculated by multiplying two.

F1 score = 2 ∗

Recall ∗ Precision Recall +

Precision

Accuracy is the most widely used evaluation metric for most traditional

applications. But the accuracy rate is not suitable for evaluating imbalanced

data sets, because many experts have observed that for extremely skewed

class distributions, the recall rate for minority classes is typically 0, which means

that no classification rules are generated for the minority class. Using the

terminology in information retrieval, the precision and recall of the minority

categories are much lower than the majority class. Accuracy gives more

weight to the majority class than to the minority class, this makes it challenging

for the classifier to implement well in the minority class.

For this purpose, additional metrics are coming into widespread usage (Guo et

al., 2008).

The F1 score is the popular evaluation matric for the imbalanced class problem

(Estabrooks and Japkowicz, 2001). F1 score combines two matrices: precision

and recall. Precision state how accurate the model was predicting a certain

class and recall state that the opposite of the regrate misplaced instances

which are misclassified. Since the multiple classes have multiple F1 scores. By

using the unweighted mean of the F1 scores for our final scoring. We want our

models to get optimized to classify instances that belong to the minority side,

such as wine quality of 3, 8, or 9 equally well with the rest of the qualities that

are represented in a larger number.

Comparing the Top 4 Features

Filtering df for only good quality

df_temp = df[df['goodquality']==1]

df_temp.describe()# Filtering df for only bad quality

df_temp2 = df[df['goodquality']==0]

df_temp2.describe()

Good Quality

Bad Quality

 Conclusion

we implement the correlation matrices and calculate the relationship among

all the features, as in red wine correlation matrices.Then we ranked the features

from these unbalancing and balancing

classes, we achieved a better performance result on the balanced class for all

the models.

based on high correlation with the quality feature. The analysis of groups of

features from left to right is implemented and first 10 features are selected and

the last feature is excluded because there is no improvement and it is

decreasing the performance of the model. 'residual sugar' feature from red

wine datasets and 'free sulfur dioxide' feature from the white wine dataset is

excluded for the final implementation of the models.

After identifying the importance of the features we start the implementation

of the model. To analyze the performance of the model firstly, we

implemented the model on the original data (unbalanced class), and then

implemented the model on the balance class, balancing each class. In terms

of the performance of the prediction model accuracy, precision, recall, and f1

score is examined, performance analysis results for unbalanced classes for

each model is examined.

By looking into the details, we can see that good quality wines have higher

levels of alcohol on average, have a lower volatile acidity on average, higher

levels of sulphates on average, and higher levels of residual sugar on

average.

