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 INTRODUCTION 

The quality of a wine is important for the consumers as well as 

the wine industry. The traditional (expert) way of measuring 

wine quality is time-consuming. Nowadays, machine learning 

models are important tools to replace human tasks. In this 

case, there are several features to predict the wine quality but 

the entire features will not be relevant for better prediction. So, our thesis work 

is focusing on what wine features are important to get the promising result. For 

the purpose of classification model and evaluation of the relevant features, we 

used three algorithms namely support vector machine (SVM), naïve Bayes (NB), 

and artificial neural network (ANN).  In this study, we used two wine quality 

datasets red wine and white wine. To evaluate the feature importance we used 

the Pearson coefficient correlation and performance measurement matrices 



such as accuracy, recall, precision, and f1 score for comparison of the machine 

learning algorithm. A grid search algorithm was applied to improve the model 

accuracy. 

For this project, I used Red Wine Quality dataset to build various classification 

models to predict whether a particular red wine is “good quality” or not. Each 

wine in this dataset is given a “quality” score between 0 and 10. For the purpose 

of this project, I converted the output to a binary output where each wine is 

either “good quality” (a score of 7 or higher) or not (a score below 7)   The quality 

of a wine is determined by 11 input variables: 

1. Fixed acidity 

2. Volatile acidity 

3. Citric acid 

4. Residual sugar 

5. Chlorides 

6. Free sulfur dioxide 

7. Total sulfur dioxide 

8. Density 

9. pH 

10. Sulfates 

11. Alcohol 

 

 

Attributes Description 



fixed acidity Fixed acids, numeric from 3.8 to 15.9 

volatile acidity Volatile acids, numeric from 0.1 to 1.6 

citric acid Citric acids, numeric from 0.0 to 1.7 

residual sugar residual sugar, numeric from 0.6 to 

65.8 

chlorides Chloride, numeric from 0.01 to 0.61 

free sulfur 

dioxide 

Free sulfur dioxide, numeric: from 1 to 

289 

total sulfur 

dioxide 

Total sulfur dioxide, numeric: from 6 

to 440 

density Density, numeric: from 0.987 to 1.039 

pH pH, numeric: from 2.7 to 4.0 

sulfates Sulfates, numeric: from 0.2 to 2.0 

alcohol Alcohol, numeric: from 8.0 to 14.9 

quality Quality, numeric: from 0 to 10, the 

output target 

 

 BACKGROUND 

A wide range of machine learning algorithms is available for the learning 

process. This section describes the classification algorithms used in wine 

quality prediction and related work. 

 Classification algorithm 

 Naive Bayesian 

The naive Bayesian is the simple supervised machine learning classification 



algorithm based on the Bayes theorem. The algorithm assumes that the 

feature conditions are independent of the given class. The naive Bayes 

algorithm helps to build fast machine learning models that can make a fast 

prediction. The algorithm finds whether a particular portion has a spot by a 

particular class it utilizes the probability of likelihood. 

 Support Vector Machine 

The support vector machine (SVM) is the most popular and most widely used 

machine learning algorithm. It is a supervised learning model that can perform 

classification and regression tasks. However, it is primarily used for 

classification problems in machine learning. 

The SVM algorithm aims to create the best line or decision boundary that can 

separate n-dimensional space into classes. So we can put the new data points 

easily in the correct groups. This best decision boundary is called a hyperplane. 

The support vector machine selects the extreme data points that helping to 

create the hyperplane. In above diagram, two different groups are classified by 

using the decision boundary or hyperplane: 

The SVM model is used for both non-linear and linear data. It uses a nonlinear 

mapping to convert  the main preparing information into a higher 

measurement. The model searches for the linear optimum splitting 

hyperplane in this new measurement. A hyperplane can split the data into 

two   classes with an appropriate nonlinear mapping to suitably high 

measurements and for the finding, this hyperplane SVM uses the support 

vectors and edges. The SVM model is a representation of the models as a 

point in space, the different classes are isolated by the gap to mapped with 



the aim that instances are wide as would be careful. The model can perform 

out a nonlinear form of classification. 

 

 Artificial neural network 

The artificial neural network is a collection of neurons that can process 

information. It has been successfully applied to the classification task in several 

industries, including the commercial, industrial, and scientific filed. The 

algorithm model is a connection between the neurons that are interconnected 

with the input layer, a hidden layer, and an output layer. The neural network is 

constant because while an element of the neural network is failing, it can 

continue its parallel nature without any difficulties. 

The implementation of the artificial neural network consists of three layers: 

input, hidden, and, output. The function at the input layer is mapped the input 

attribute which passes input to the hidden layer. The hidden layer is a middle 

layer where all input with the weights is received to each node in the hidden 

layer. The output layer is mapped to the predicted. The connection among the 

neurons is called weights, it has numerical values and this weight among the 

neurons are determining the learning ability of the neural network. The 

activation function is used to standardize the output from the neurons and 

these activation functions are evaluate the output of the neural network in the 

mathematical equations. Each neuron has an activation function. The neural 

network is hard to understand without mathematical reasoning. Activation 

functions are also called the transmission function and also helps to 

standardize the output range between -1 to 1 or 0 to 1.



 

 OBJECTIVES 

The objectives of this project are as follows: 

 Explaining data set through the code of python. 

 To implement different machine learning techniques. 

 To experiment with different methods to see which yields the highest accuracy. 

 To determine which features are the most indicative of a good quality wine. 

First, I imported all of the relevant libraries that I’ll be using as well as the data 

itself. 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.datasets import load_wine 

from sklearn.linear_model import LogisticRegression 

from sklearn.svm import SVC 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.neural_network import MLPClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import confusion_matrix, 

classification_report,accuracy_score 

import warnings 



warnings.filterwarnings("ignore") 

 Reading Data 

import wine dataset 

wine = datasets.load_wine() 

# np.c_ is the numpy concatenate function 

wine_df = pd.DataFrame(data= np.c_[wine['data'], wine['target']], 

columns= wine['feature_names'] + ['target']) 

wine_df.head() 

 

 

There are a total of 1599 rows and 12 columns. The data looks very clean by 

looking at the first five rows, but I still wanted to make sure that there were no 

missing values. 

 Array 



 

 Missing Values 

 

This is a very beginner-friendly dataset. I did not have to deal with any missing 

values, and there isn’t much flexibility to conduct some feature engineering 

given these variables. Next, I wanted to explore my data a little bit more. 

 Exploring Variables 

Histogram of ‘quality’ variable 

First, I wanted to see the distribution of the quality variable. I wanted to make 

sure that I had enough ‘good quality’ wines in my dataset — you’ll see later how 

I defined ‘good quality’. The datasets are the imbalanced distribution of red 

wine and white wine where the separate classes are not equally represented. 

This imbalanced data can lead to overfitting and under fitting algorithms. The 



red wine's highest quality class 5 instances are 681 and white wine highest 

quality class 6 instances are 2198. Both datasets are unbalanced with the 

number of instances ranging from 5 in the minority class up to 681 in red wine 

and ranging from 6 in the minority class up to 2198 in the majority class. The 

highest quality scores are rarely paralleled to the middle classes. By using 

resampling this problem can be solved, the resampling is by adding copies of 

examples from the under-represented class of unnaturally creating such 

instances (over-sampling) or either by removing from the over- represented 

class (under-sampling). Mostly, it will be better to over-sample unless you have 

sufficiently of data. However, there are some disadvantages to over-sampling 

it increases the instances of the dataset, so the processing time is increasing to 

build the model. Over- sampling can lead to overfitting when putting the 

extremes. Therefore the resampling is preferred. 

 

fig = px.histogram(df,x='quality') 

fig.show() 

 



 Correlation Matrix 

Next I wanted to see the correlations between the variables that I’m working 

with. This allows me to get a much better understanding of the relationships 

between my variables in a quick glimpse. 

Immediately, I can see that there are some variables that are strongly 

correlated to quality. It’s likely that these variables are also the most important 

features in our machine learning model, but we’ll take a look at that later. 

For a better understanding of the features and to examines the correlation 

between the features. We use the Pearson coefficient correlation matrices to 

calculate the correlation between the features. 

plt.figure(figsize=(15,10)) 

sns.heatmap(wine_df.corr(),annot=True) 

plt.show() 

 

 

From above screenshot of  red wine correlation matrix we ranked the features 

according to the high correlation values to the quality class such as freatures 



are 'alcohol', 'volatile acidity', 'sulphates', 'citric acid', 'total sulfur dioxide', 

'density', 'chlorides', 'fixed acidity', 'pH', 'free sulfur dioxide', 'residual sugar'. 

Similarily, from Figure 6 white wine correlation matrix we ranked the features 

according to the high correlation values to the quality class such as freatures 

are 'alcohol', 'density', 'chlorides', 'volatile acidity', 'total sulfur dioxide', 'fixed 

acidity', 'pH', 'residual sugar', 'sulphates', 'citric acid', 'free sulfur dioxide'. 

 Plotting target values 

 

 

 Convert to a Classification Problem 

Going back to my objective, I wanted to compare the effectiveness of different 

classification techniques, so I needed to change the output variable to a binary 

output. 



For this problem, I defined a bottle of wine as ‘good quality’ if it had a quality 

score of 7 or higher, and if it had a score of less than 7, it was deemed ‘bad 

quality’. 

Once I converted the output variable to a binary output, I separated my feature 

variables (X) and the target variable (y) into separate dataframes. 

# Create Classification version of target variable 

df['goodquality'] = [1 if x >= 7 else 0 for x in df['quality']]# Separate feature 

variables and target variable 

X = df.drop(['quality','goodquality'], axis = 1) 

y = df['goodquality'] 

 Proportion of Good vs Bad Wines 

I wanted to make sure that there was a reasonable number of good quality 

wines. Based on the results below, it seemed like a fair enough number. In some 

applications, resampling may be required if the data was extremely 

imbalanced, but I assumed that it was okay for this purpose. 

# See proportion of good vs bad wines 

df['goodquality'].value_counts() 

 

 Preparing Data for Modelling 

 Standardizing Feature Variables 

At this point, I felt that I was ready to prepare the data for modelling. The first 

thing that I did was standardize the data. Standardizing the data means that it 

will transform the data so that its distribution will have a mean of 0 and a 



standard deviation of 1. It’s important to standardize your data in order to 

equalize the range of the data. 

For example, imagine a dataset with two input features: height in millimeters 

and weight in pounds. Because the values of ‘height’ are much higher due to 

its measurement, a greater emphasis will automatically be placed on height 

than weight, creating a bias. 

# Normalize feature variables 

from sklearn.preprocessing import StandardScaler 

X_features = X 

X = StandardScaler().fit_transform(X) 

Split data 

Next I split the data into a training and test set so that I could cross-validate my 

models and determine their effectiveness. 

# Splitting the data 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.25, 

random_state=0) 

Now, 

 Modelling 

For this project, I wanted to compare five different machine learning models: 

decision trees, random forests, AdaBoost, Gradient Boost, and XGBoost. For the 

purpose of this project, I wanted to compare these models by their accuracy. 



 Model 1: Decision Tree 

Decision trees are a popular model, used in operations research, strategic 

planning, and machine learning. Each square above is called a node, and the 

more nodes you have, the more accurate your decision tree will be (generally). 

The last nodes of the decision tree, where a decision is made, are called the 

leaves of the tree. Decision trees are intuitive and easy to build but fall short 

when it comes to accuracy. 

from sklearn.metrics import classification_report 

from sklearn.tree import DecisionTreeClassifiermodel1 = 

DecisionTreeClassifier(random_state=1) 

model1.fit(X_train, y_train) 

y_pred1 = model1.predict(X_test)print(classification_report(y_test, y_pred1)) 

 

 Model 2: Random Forest 

Random forests are an ensemble learning technique that builds off of decision 

trees. Random forests involve creating multiple decision trees 

using bootstrapped datasets of the original data and randomly selecting a 

subset of variables at each step of the decision tree. The model then selects the 

mode of all of the predictions of each decision tree. What’s the point of this? By 

https://en.wikipedia.org/wiki/Ensemble_learning
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/


relying on a “majority wins” model, it reduces the risk of error from an individual 

tree. 

 

For example, if we created one decision tree, the third one, it would predict 0. But 

if we relied on the mode of all 4 decision trees, the predicted value would be 1. 

This is the power of random forests. 

from sklearn.ensemble import RandomForestClassifier 

model2 = RandomForestClassifier(random_state=1) 

model2.fit(X_train, y_train) 

y_pred2 = model2.predict(X_test)print(classification_report(y_test, y_pred2)) 

 

 

 Model 3: AdaBoost 

The next three models are boosting algorithms that take weak learners and turn 

them into strong ones. I don’t want to get sidetracked and explain the 

differences between the three because it’s quite complicated and intricate. 

That being said, I’ll leave some resources where you can learn about AdaBoost, 

Gradient Boosting, and XGBoosting. 

StatQuest: AdaBoost 

StatQuest: Gradient Boost 

https://www.youtube.com/watch?v=LsK-xG1cLYA
https://www.youtube.com/watch?v=3CC4N4z3GJc


 StatQuest: XGBoost 

from sklearn.ensemble import AdaBoostClassifier 

model3 = AdaBoostClassifier(random_state=1) 

model3.fit(X_train, y_train) 

y_pred3 = model3.predict(X_test)print(classification_report(y_test, y_pred3)) 

 

 Model4: KNN 

# Train 

fit_knn <- knn3(formula = fml, data = train_set, k = 5) 

 

# Predict 

y_knn <- predict(object = fit_knn, 

newdata = test_set, 

type ="class") 

 

# Compare the results: confusion matrix 

caret::confusionMatrix(data = y_knn, 

reference = test_set$type, 

positive = "red") 

https://www.youtube.com/watch?v=OtD8wVaFm6E


## Confusion Matrix and Statistics 

## 

##           Reference 

## Prediction red white 

##      red   145    15 

##      white  15   475 

## 

##                Accuracy : 0.954 

##                  95% CI : (0.935, 0.969) 

##     No Information Rate : 0.754 

##     P-Value [Acc > NIR] : <2e-16 

## 

##                   Kappa : 0.876 

## 

##  Mcnemar's Test P-Value : 1 

## 

##             Sensitivity : 0.906 

##             Specificity : 0.969 

##          Pos Pred Value : 0.906 

##          Neg Pred Value : 0.969 

##              Prevalence : 0.246 

##          Detection Rate : 0.223 

##    Detection Prevalence : 0.246 

##       Balanced Accuracy : 0.938 



## 

##        'Positive' Class : red 

## 

# F1 score 

F_meas(data = y_knn, reference = test_set$type) 

## [1] 0.906 

 

 

 Model 4: Gradient Boosting 

from sklearn.ensemble import GradientBoostingClassifier 

model4 = GradientBoostingClassifier(random_state=1) 

model4.fit(X_train, y_train) 

y_pred4 = model4.predict(X_test)print(classification_report(y_test, y_pred4)) 

 

 Model 5: XGBoost 

import xgboost as xgb 

model5 = xgb.XGBClassifier(random_state=1) 

model5.fit(X_train, y_train) 

y_pred5 = model5.predict(X_test)print(classification_report(y_test, y_pred5)) 



 

By comparing the five models, the random forest and XGBoost seems to yield 

the highest level of accuracy. However, since XGBoost has a better f1-score for 

predicting good quality wines (1), I’m concluding that the XGBoost is the winner 

of the five models. 

 

 

 Feature Importance 

Below, I graphed the feature importance based on the Random Forest model 

and the XGBoost model. While they slightly vary, the top 3 features are the same: 

alcohol, volatile acidity, and sulphates. If you look below the graphs, I split the 

dataset into good quality and bad quality to compare these variables in more 

detail. The importance of the features are identified and from both dataset's 

first 10 features were selected and the last feature was excluded, above red wine 

performance analysis and white wine performance analysis shows that the 

performance in terms of accuracy. 

Firstly, these selected features were implemented on the unbalanced classes, 

the unbalanced classes and the performance of the prediction model, in terms 

of accuracy, precision, recall, and F1 score is examined. 
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6 0.60 0.60 0.60 0.54 0.53 0.54 0.57 0.62 0.59 
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8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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69.06 54.06 64.37 

 

 via Random Forest 

feat_importances = pd.Series(model2.feature_importances_, 

index=X_features.columns) 

feat_importances.nlargest(25).plot(kind='barh',figsize=(10,10)) 

 



 via XGBoost 

feat_importances = pd.Series(model5.feature_importances_, 

index=X_features.columns) 

feat_importances.nlargest(25).plot(kind='barh',figsize=(10,10)) 

 

 Evaluation 

The performance measurement is calculated and evaluate the techniques to 

detect the effectiveness and efficiency of the model. There are four ways to 

check the predictions are correct or incorrect: 

 True Positive: Number of samples that are predicted to be positive which are 

truly positive. 

 False Positive: Number of samples that are predicted to be positive which are 

truly negative. 

 False Negative: Number of samples that are predicted to be negative which are 

truly positive. 

 True Negative: Number of samples that are predicted to be negative which are 

truly negative. 

Below listed techniques, we use for the evaluation of the model. 

1. Accuracy – Accuracy is defined as the ratio of correctly predicted observation 

to the total observation. The accuracy can be calculated easily by dividing the 



number of correct predictions by the total number of prediction.    



                                              True Positive + True Negative 

Accuracy  = True Positive + False Positive + False Negative + True Negative 

 

2. Precision – Precision is defined as the ratio of correctly predicted positive 

observations to the total predicted positive observations. 

 

 

Precision = 

True Positive 

 

True Positive + False Positive 

 

3. Recall – Recall is defined as the ratio of correctly predicted positive 

observations to all observations in the actual class. The recall is also known as 

the True Positive rate calculated as, 

Recall = True Positive 

 

True Positive + False Negative

 

4. F1 Score – F1 score is the weighted average of precision and recall. The f1 score 

is used to measure the test accuracy of the model. F1 score is calculated by 

multiplying the recall and precision is divided by the recall and precision, and 

the result is calculated by multiplying two. 

 

F1 score = 2 ∗ 

 

Recall ∗ Precision Recall + 

Precision 

 



Accuracy is the most widely used evaluation metric for most traditional 

applications. But the accuracy rate is not suitable for evaluating imbalanced 

data sets, because many experts have observed that for extremely skewed 

class distributions, the recall rate for minority classes is typically 0, which means 

that no classification rules are generated for the minority class. Using the 

terminology in information retrieval, the precision and recall of the minority 

categories are much lower than the majority class. Accuracy gives more 

weight to the majority class than to the minority class, this makes it challenging 

for the classifier to implement well in the minority class.



For this purpose, additional metrics are coming into widespread usage (Guo et 

al., 2008). 

The F1 score is the popular evaluation matric for the imbalanced class problem 

(Estabrooks and Japkowicz, 2001). F1 score combines two matrices: precision 

and recall. Precision state how accurate the model was predicting a certain 

class and recall state that the opposite of the regrate misplaced instances 

which are misclassified. Since the multiple classes have multiple F1 scores. By 

using the unweighted mean of the F1 scores for our final scoring. We want our 

models to get optimized to classify instances that belong to the minority side, 

such as wine quality of 3, 8, or 9 equally well with the rest of the qualities that 

are represented in a larger number. 

 

Comparing the Top 4 Features 

 

# Filtering df for only good quality 

df_temp = df[df['goodquality']==1] 

df_temp.describe()# Filtering df for only bad quality 

df_temp2 = df[df['goodquality']==0] 

df_temp2.describe() 

 

Good Quality 



 

Bad Quality 

 Conclusion 

we implement the correlation matrices and calculate the relationship among 

all the features, as in red wine correlation matrices.Then we ranked the features 

from these unbalancing and balancing



classes, we achieved a better performance result on the balanced class for all 

the models. 

based on high correlation with the quality feature. The analysis of groups of 

features from left to right is implemented and first 10 features are selected and 

the last feature is excluded because there is no improvement and it is 

decreasing the performance of the model. 'residual sugar' feature from red 

wine datasets and 'free sulfur dioxide' feature from the white wine dataset is 

excluded for the final implementation of the models. 

After identifying the importance of the features we start the implementation 

of the model. To analyze the performance of the model firstly, we 

implemented the model on the original data (unbalanced class), and then 

implemented the model on the balance class, balancing each class. In terms 

of the performance of the prediction model accuracy, precision, recall, and f1 

score is examined, performance analysis results for unbalanced classes for 

each model is examined. 

By looking into the details, we can see that good quality wines have higher 

levels of alcohol on average, have a lower volatile acidity on average, higher 

levels of sulphates on average, and higher levels of residual sugar on 

average. 


